Android显示系统SurfaceFlinger详解

  目录

  一、Android系统启动

  Android设备从按下开机键到桌面显示画面,大致过程如下图流程:

  开机显示桌面、从桌面点击 App 图标到 Activity显示在屏幕上的过程又是怎样的呢?下面介绍Android系统中的“画家” - SurfaceFlinger.

  SurfaceFlinger 启动过程:

  二、SurfaceFlinger代码剖析[Android 11]

  代码路径:/frameworks/native/services/surfaceflinger/

  SurfaceFlinger二进制分成surfaceflinger可执行文件(main入口)和libsurfaceflinger.so库文件(功能实现),由main_surfaceflinger.cpp文件编译而成,Android.bp代码模块编译配置如下:

  1.【执行文件-surfaceflinger】

  ...cc_binary {

  name: "surfaceflinger",

  defaults: ["surfaceflinger_defaults"],

  init_rc: ["surfaceflinger.rc"],

  srcs: ["main_surfaceflinger.cpp"],

  whole_static_libs: [

  "libsigchain",

  ],

  shared_libs: [

  "android.frameworks.displayservice@1.0",

  "android.hardware.configstore-utils",

  "android.hardware.configstore@1.0",

  "android.hardware.graphics.allocator@2.0",

  "libbinder",

  "libcutils",

  "libdisplayservicehidl",

  "libhidlbase",

  "libhidltransport",

  "liblayers_proto",

  "liblog",

  "libsurfaceflinger",

  "libtimestats_proto",

  "libutils",

  ],

  static_libs: [

  "libserviceutils",

  "libtrace_proto",

  ],

  ldflags: ["-Wl,--export-dynamic"],

  // TODO(b/71715793): These version-scripts are required due to the use of

  // whole_static_libs to pull in libsigchain. To work, the files had to be

  // locally duplicated from their original location

  // $ANDROID_ROOT/art/sigchainlib/

  multilib: {

  lib32: {

  version_script: "version-script32.txt",

  },

  lib64: {

  version_script: "version-script64.txt",

  },

  },

  }...

  SurfaceFlinger可执行二进制文件surfaceflinger由main_surfaceflinger.cpp文件独立编译而成,主要负责搭建进程启动环境:

  int main(int, char**) {

  signal(SIGPIPE, SIG_IGN);

  // 从8.0开始,Android提供了hidl机制,将原先直接由JNI->Native->HAL的接口调用形式,统一规范成hidl service/client交互形式。

  // 该方式从一方面规范和统一了Android Framework和HAL的调用机制,但实际从项目维度,这种调用方式对性能上开销,将比直接调用的方式要花费更多的时间。

  hardware::configureRpcThreadpool(1 /* maxThreads */,

  false /* callerWillJoin */);

  startGraphicsAllocatorService();

  // When SF is launched in its own process, limit the number of

  // binder threads to 4.

  ProcessState::self()->setThreadPoolMaxThreadCount(4);

  // start the thread pool

  sp ps(ProcessState::self());

  ps->startThreadPool();

  // 创建SurfaceFlinger对象,由强指针指向。

  // SurfaceFlinger继承RefBase类,所以此处一旦new出对象赋给sp指针后,将立刻出发SurfaceFlinger类的onFirstRef方法的调用。

  // instantiate surfaceflinger

  sp flinger = surfaceflinger::createSurfaceFlinger();

  setpriority(PRIO_PROCESS, 0, PRIORITY_URGENT_DISPLAY);

  set_sched_policy(0, SP_FOREGROUND);

  // Put most SurfaceFlinger threads in the system-background cpuset

  // Keeps us from unnecessarily using big cores

  // Do this after the binder thread pool init

  if (cpusets_enabled()) set_cpuset_policy(0, SP_SYSTEM);

  // SurfaceFlinger类正式初始化

  // initialize before clients can connect

  flinger->init();

  // SurfaceFlinger向ServiceManager注册Binder服务,

  // 这样在其他进程中可以通过getService+SERVICE_NAME来获取SurfaceFlinger服务,继而可以和SurfaceFlinger类进行Binder通信。

  // publish surface flinger

  sp sm(defaultServiceManager());

  sm->addService(String16(SurfaceFlinger::getServiceName()), flinger, false,

  IServiceManager::DUMP_FLAG_PRIORITY_CRITICAL | IServiceManager::DUMP_FLAG_PROTO);

  //里面的new DisplayService()方法调用HIDL定义接口 Return> getEventReceiver() override;

  startDisplayService(); // dependency on SF getting registered above

  if (SurfaceFlinger::setSchedFifo(true) != NO_ERROR) {

  ALOGW("Couldn't set to SCHED_FIFO: %s", strerror(errno));

  }

  // SurfaceFlinger类进入主循环(此处注意SurfaceFlinger类未继承Threads类,不遵循Threads类的接口执行顺序)

  // run surface flinger in this thread

  flinger->run();

  return 0;

  }

  HIDL接口介绍可以参考:https://source.android.google.cn/reference/hidl/

  2.【动态库-libsurfaceflinger.so】

  Android.bp代码模块编译配置如下:

  ...cc_library_shared {

  name: "libsurfaceflinger",

  defaults: ["libsurfaceflinger_defaults"],

  cflags: [

  "-fvisibility=hidden",

  "-Werror=format",

  "-DREDUCE_VIDEO_WORKLOAD",

  "-DUSE_AML_HW_ACTIVE_MODE",

  ],

  srcs: [

  ":libsurfaceflinger_sources",

  ],

  logtags: ["EventLog/EventLogTags.logtags"],

  include_dirs: [

  "frameworks/native/vulkan/vkjson",

  "frameworks/native/vulkan/include",

  "hardware/amlogic/gralloc/amlogic",

  "hardware/amlogic/hwcomposer/tvp",

  "hardware/amlogic/gralloc",

  ],

  static_libs: [

  "libomxutils_static@2",

  "libamgralloc_ext_static@2",

  ],

  cppflags: [

  "-fwhole-program-vtables", // requires ThinLTO

  ],

  lto: {

  thin: true,

  },

  }...

  上面提到的createSurfaceFlinger()中会调用new SurfaceFlinger(),然后会执行到:onFirstRef():

  void SurfaceFlinger::onFirstRef()

  {

  mEventQueue.init(this);

  }

  onFirstRef() 中会创建 Handler 并初始化: /frameworks/native/services/surfaceflinger/Scheduler/MessageQueue.cpp

  //MessageQueue.cpp

  void MessageQueue::init(const sp& flinger)

  {

  mFlinger = flinger;

  mLooper = new Looper(true);

  mHandler = new Handler(*this);

  }

  然后会执行到 SurfaceFlinger::init(),该方法主要功能是:

  // Do not call property_set on main thread which will be blocked by init

  // Use StartPropertySetThread instead.

  void SurfaceFlinger::init() {

  ALOGI( "SurfaceFlinger's main thread ready to run. "

  "Initializing graphics H/W...");

  Mutex::Autolock _l(mStateLock);

  // 对于CompositionEngine 属性进行设置, 创建RenderEngine对象

  // Get a RenderEngine for the given display / config (can't fail)

  // TODO(b/77156734): We need to stop casting and use HAL types when possible.

  // Sending maxFrameBufferAcquiredBuffers as the cache size is tightly tuned to single-display.

  mCompositionEngine->setRenderEngine(renderengine::RenderEngine::create(

  renderengine::RenderEngineCreationArgs::Builder()

  .setPixelFormat(static_cast(defaultCompositionPixelFormat))

  .setImageCacheSize(maxFrameBufferAcquiredBuffers)

  .setUseColorManagerment(useColorManagement)

  .setEnableProtectedContext(enable_protected_contents(false))

  .setPrecacheToneMapperShaderOnly(false)

  .setSupportsBackgroundBlur(mSupportsBlur)

  .setContextPriority(useContextPriority

  ? renderengine::RenderEngine::ContextPriority::HIGH

  : renderengine::RenderEngine::ContextPriority::MEDIUM)

  .build()));

  mCompositionEngine->setTimeStats(mTimeStats);

  LOG_ALWAYS_FATAL_IF(mVrFlingerRequestsDisplay,

  "Starting with vr flinger active is not currently supported.");  //创建HWComposer对象并传入一个name属性,再通过mCompositionEngine->setHwComposer设置对象属性。

  mCompositionEngine->setHwComposer(getFactory().createHWComposer(getBE().mHwcServiceName));

  mCompositionEngine->getHwComposer().setConfiguration(this, getBE().mComposerSequenceId);  //processDisplayHotplugEventsLocked(); 处理 任何初始热插拔和显示更改的结果  //在此方法中主要有调用 initScheduler(displayId);

  // Process any initial hotplug and resulting display changes.

  processDisplayHotplugEventsLocked();

  const auto display = getDefaultDisplayDeviceLocked();

  LOG_ALWAYS_FATAL_IF(!display, "Missing internal display after registering composer callback.");

  LOG_ALWAYS_FATAL_IF(!getHwComposer().isConnected(*display->getId()),

  "Internal display is disconnected.");

  if (useVrFlinger) {

  auto vrFlingerRequestDisplayCallback = [this](bool requestDisplay) {

  // This callback is called from the vr flinger dispatch thread. We

  // need to call signalTransaction(), which requires holding

  // mStateLock when we're not on the main thread. Acquiring

  // mStateLock from the vr flinger dispatch thread might trigger a

  // deadlock in surface flinger (see b/66916578), so post a message

  // to be handled on the main thread instead.

  static_cast(schedule([=] {

  ALOGI("VR request display mode: requestDisplay=%d", requestDisplay);

  mVrFlingerRequestsDisplay = requestDisplay;

  signalTransaction();

  }));

  };

  mVrFlinger = dvr::VrFlinger::Create(getHwComposer().getComposer(),

  getHwComposer()

  .fromPhysicalDisplayId(*display->getId())

  .value_or(0),

  vrFlingerRequestDisplayCallback);

  if (!mVrFlinger) {

  ALOGE("Failed to start vrflinger");

  }

  }

  // initialize our drawing state

  mDrawingState = mCurrentState;

  // set initial conditions (e.g. unblank default device)

  initializeDisplays();

  char primeShaderCache[PROPERTY_VALUE_MAX];

  property_get("service.sf.prime_shader_cache", primeShaderCache, "1");

  if (atoi(primeShaderCache)) {

  getRenderEngine().primeCache();

  }

  // Inform native graphics APIs whether the present timestamp is supported:

  const bool presentFenceReliable =

  !getHwComposer().hasCapability(hal::Capability::PRESENT_FENCE_IS_NOT_RELIABLE);

  mStartPropertySetThread = getFactory().createStartPropertySetThread(presentFenceReliable);

  if (mStartPropertySetThread->Start() != NO_ERROR) {

  ALOGE("Run StartPropertySetThread failed!");

  }

  ALOGV("Done initializing");

  }

  首先看下如何创建 HWComposer:

  //make_unique 相当于 new,(能够取代new 而且无需 delete pointer,有助于代码管理)。

  std::unique_ptr DefaultFactory::createHWComposer(const std::string& serviceName) {

  return std::make_unique(serviceName);

  }

  对于CompositionEngine进行初始化:

  std::unique_ptr DefaultFactory::createCompositionEngine() {

  return compositionengine::impl::createCompositionEngine();

  }

  同样是通过make_unique创建了 CompositionEngine对象:

  std::unique_ptr createCompositionEngine() {

  return std::make_unique();

  }

  再回到flinger->init()中processDisplayHotplugEventsLocked(); 处理任何初始热插拔和显示更改的结果,在此方法中主要有调用 initScheduler(displayId):

  void SurfaceFlinger::initScheduler(DisplayId primaryDisplayId) {

  if (mScheduler) {

  // In practice it's not allowed to hotplug in/out the primary display once it's been

  // connected during startup, but some tests do it, so just warn and return.

  ALOGW("Can't re-init scheduler");

  return;

  }

  auto currentConfig = HwcConfigIndexType(getHwComposer().getActiveConfigIndex(primaryDisplayId));

  mRefreshRateConfigs =

  std::make_unique(getHwComposer().getConfigs(

  primaryDisplayId),

  currentConfig);

  mRefreshRateStats =

  std::make_unique(*mRefreshRateConfigs, *mTimeStats,

  currentConfig, hal::PowerMode::OFF);

  mRefreshRateStats->setConfigMode(currentConfig);

  mPhaseConfiguration = getFactory().createPhaseConfiguration(*mRefreshRateConfigs);

  // 处创建Scheduler对象

  // start the EventThread

  mScheduler =

  getFactory().createScheduler([this](bool enabled) { setPrimaryVsyncEnabled(enabled); },

  *mRefreshRateConfigs, *this);

  //创建app链接 和 sf链接 mAppConnectionHandle =

  mScheduler->createConnection("app", mPhaseConfiguration->getCurrentOffsets().late.app,

  impl::EventThread::InterceptVSyncsCallback());

  mSfConnectionHandle =

  mScheduler->createConnection("sf", mPhaseConfiguration->getCurrentOffsets().late.sf,

  [this](nsecs_t timestamp) {

  mInterceptor->saveVSyncEvent(timestamp);

  });

  mEventQueue->setEventConnection(mScheduler->getEventConnection(mSfConnectionHandle));

  mVSyncModulator.emplace(*mScheduler, mAppConnectionHandle, mSfConnectionHandle,

  mPhaseConfiguration->getCurrentOffsets());

  mRegionSamplingThread =

  new RegionSamplingThread(*this, *mScheduler,

  RegionSamplingThread::EnvironmentTimingTunables());

  // Dispatch a config change request for the primary display on scheduler

  // initialization, so that the EventThreads always contain a reference to a

  // prior configuration.

  //

  // This is a bit hacky, but this avoids a back-pointer into the main SF

  // classes from EventThread, and there should be no run-time binder cost

  // anyway since there are no connected apps at this point.

  const nsecs_t vsyncPeriod =

  mRefreshRateConfigs->getRefreshRateFromConfigId(currentConfig).getVsyncPeriod();

  mScheduler->onPrimaryDisplayConfigChanged(mAppConnectionHandle, primaryDisplayId.value,

  currentConfig, vsyncPeriod);

  }

  详细看下app、sf的链接:

  Scheduler::ConnectionHandle Scheduler::createConnection(

  const char* connectionName, nsecs_t phaseOffsetNs,

  impl::EventThread::InterceptVSyncsCallback interceptCallback) {

  auto vsyncSource = makePrimaryDispSyncSource(connectionName, phaseOffsetNs);

  auto eventThread = std::make_unique(std::move(vsyncSource), std::move(interceptCallback));

  return createConnection(std::move(eventThread));

  }

  可以看到创建了DispSyncSource对象,且构造方法传入了四个值,dispSync对象,phaseOffset偏移量,traceVsync为true,name就是 app或 sf

  DispSyncSource::DispSyncSource(DispSync* dispSync, nsecs_t phaseOffset, bool traceVsync,

  const char* name)

  : mName(name),

  mValue(base::StringPrintf("VSYNC-%s", name), 0), //对mValue进行了赋值,systrace上我们看到的 VSYNC-app VSYNC-sf 标签就是它

  mTraceVsync(traceVsync), //mTraceVsync为true,在onDispSyncEvent方法中

  mVsyncOnLabel(base::StringPrintf("VsyncOn-%s", name)),

  mDispSync(dispSync),

  mPhaseOffset(base::StringPrintf("VsyncOffset-%s", name), phaseOffset) //对mPhaseOffset进行初始化 vsync信号到来时候,sf、app的偏移量

  所以我们在systrace上面看到的 VSYNC-app/VSYNC-sf 驼峰 0 1变化,来源于这个。

  创建EventThread对象,传入sf 或 app 相关联的vsyncSource对象:

  auto eventThread = std::make_unique(std::move(vsyncSource), std::move(interceptCallback));

  说明:

  相关问题:

  此时,在前缓冲区内容全部映射到屏幕上之后,后缓冲区尚未准备好下一帧,屏幕将无法读取下一帧,所以只能继续显示当前一帧的图形,造成一帧显示多次,也就是卡顿。

  此时,屏幕未完全把前缓冲区的一帧映射到屏幕,而系统已经在后缓冲区准备好了下一帧,并要求读取下一帧到屏幕,将会导致屏幕上半部分是上一帧的图形,而下半部分是下一帧的图形,造成屏幕上显示多帧,也就是屏幕撕裂。

  为了解决上述问题,Android显示系统一般会有多级缓冲,即在屏幕刷新的同时在另外一个buffer准备下一帧数据,以此提高性能:

  3. 服务启动配置文件:/frameworks/native/services/surfaceflinger/surfaceflinger.rc

  上面发现服务配置文件也在Android.mk中被加载:LOCAL_INIT_RC := surfaceflinger.rc

  service surfaceflinger /system/bin/surfaceflinger

  class core animation

  user system

  group graphics drmrpc readproc

  onrestart restart zygote

  writepid /dev/stune/foreground/tasks

  socket pdx/system/vr/display/client stream 0666 system graphics u:object_r:pdx_display_client_endpoint_socket:s0

  socket pdx/system/vr/display/manager stream 0666 system graphics u:object_r:pdx_display_manager_endpoint_socket:s0

  socket pdx/system/vr/display/vsync stream 0666 system graphics u:object_r:pdx_display_vsync_endpoint_socket:s0

  4. Surface 创建过程

  Surface 创建的过程就是 Activity 显示的过程,在 ActivityThread.handleResumeActivity() 中调用了 Activity.makeVisible()具体实现:

  void makeVisible() {

  if (!mWindowAdded) {

  ViewManager wm = getWindowManager();//此处 getWindowManager 获取的是 WindowManagerImpl 对象

  wm.addView(mDecor, getWindow().getAttributes());

  mWindowAdded = true;

  }

  mDecor.setVisibility(View.VISIBLE);

  }

  WindowManagerImpl.java:

  public void addView(@NonNull View view, @NonNull ViewGroup.LayoutParams params) {

  applyDefaultToken(params);

  mGlobal.addView(view, params, mDisplay, mParentWindow);

  }

  WindowManagerGlobal.java:

  public void addView(View view, ViewGroup.LayoutParams params, Display display, Window parentWindow) {

  ...

  final WindowManager.LayoutParams wparams = (WindowManager.LayoutParams) params;

  //创建 ViewRootImpl

  ViewRootImpl root = new ViewRootImpl(view.getContext(), display);

  view.setLayoutParams(wparams);

  mViews.add(view);

  mRoots.add(root);

  mParams.add(wparams);

  //设置 View

  root.setView(view, wparams, panelParentView);

  ...

  }

  创建 ViewRootImpl:

  public ViewRootImpl(Context context, Display display) {

  //获取 IWindowSession的代理类

  this(context, display, WindowManagerGlobal.getWindowSession(),

  false /* useSfChoreographer */);

  }

  WindowManagerGlobal.java:

  @UnsupportedAppUsage

  public static IWindowSession getWindowSession() {

  synchronized (WindowManagerGlobal.class) {

  if (sWindowSession == null) {

  try {

  // Emulate the legacy behavior. The global instance of InputMethodManager

  // was instantiated here.

  // TODO(b/116157766): Remove this hack after cleaning up @UnsupportedAppUsage

  //获取 IMS 的代理类

  InputMethodManager.ensureDefaultInstanceForDefaultDisplayIfNecessary();

  IWindowManager windowManager = getWindowManagerService();

  //经过 Binder 调用,最终调用 WMS

  sWindowSession = windowManager.openSession(

  new IWindowSessionCallback.Stub() {

  @Override

  public void onAnimatorScaleChanged(float scale) {

  ValueAnimator.setDurationScale(scale);

  }

  });

  } catch (RemoteException e) {

  throw e.rethrowFromSystemServer();

  }

  }

  return sWindowSession;

  }

  }

  WindowManagerService.openSession:

  // -------------------------------------------------------------

  // IWindowManager API

  // -------------------------------------------------------------

  @Override

  public IWindowSession openSession(IWindowSessionCallback callback) {

  //创建session对象

  return new Session(this, callback);

  }

  再次经过 Binder 将数据写回 app 进程,则获取的便是 Session 的代理对象 IWindowSession。

  创建完 ViewRootImpl 对象后,接下来调用该对象的 setView() 方法:

  ViewRootImpl:

  public void setView(View view, WindowManager.LayoutParams attrs, View panelParentView) {

  synchronized (this) {

  requestLayout(); //详见下面分析

  ...

  //通过 Binder调用,进入 system 进程的 Session

  res = mWindowSession.addToDisplayAsUser(mWindow, mSeq, mWindowAttributes,         getHostVisibility(), mDisplay.getDisplayId(), userId, mTmpFrame,         mAttachInfo.mContentInsets, mAttachInfo.mStableInsets,         mAttachInfo.mDisplayCutout, inputChannel,         mTempInsets, mTempControls);

  ...

  }

  }

  Session.java

  @Override

  public int addToDisplayAsUser(IWindow window, int seq, WindowManager.LayoutParams attrs,

  int viewVisibility, int displayId, int userId, Rect outFrame,

  Rect outContentInsets, Rect outStableInsets,

  DisplayCutout.ParcelableWrapper outDisplayCutout, InputChannel outInputChannel,

  InsetsState outInsetsState, InsetsSourceControl[] outActiveControls) {

  //调用WMS的addWindow方法

  return mService.addWindow(this, window, seq, attrs, viewVisibility, displayId, outFrame,

  outContentInsets, outStableInsets, outDisplayCutout, outInputChannel,

  outInsetsState, outActiveControls, userId);

  }

  WindowManagerService.java:

  public int addWindow(Session session, IWindow client, int seq,

  LayoutParams attrs, int viewVisibility, int displayId, Rect outFrame,

  Rect outContentInsets, Rect outStableInsets,

  DisplayCutout.ParcelableWrapper outDisplayCutout, InputChannel outInputChannel,

  InsetsState outInsetsState, InsetsSourceControl[] outActiveControls,

  int requestUserId) {

  Arrays.fill(outActiveControls, null);

  int[] appOp = new int[1];

  final boolean isRoundedCornerOverlay = (attrs.privateFlags

  & PRIVATE_FLAG_IS_ROUNDED_CORNERS_OVERLAY) != 0;

  int res = mPolicy.checkAddPermission(attrs.type, isRoundedCornerOverlay, attrs.packageName,

  appOp);

  if (res != WindowManagerGlobal.ADD_OKAY) {

  return res;

  }

  WindowState parentWindow = null;

  final int callingUid = Binder.getCallingUid();

  final int callingPid = Binder.getCallingPid();

  final long origId = Binder.clearCallingIdentity();

  final int type = attrs.type;

  synchronized (mGlobalLock) {

  if (!mDisplayReady) {

  throw new IllegalStateException("Display has not been initialialized");

  }

  ...

  //创建 WindowState

  final WindowState win = new WindowState(this, session, client, token, parentWindow,

  appOp[0], seq, attrs, viewVisibility, session.mUid, userId,

  session.mCanAddInternalSystemWindow);

  if (win.mDeathRecipient == null) {

  // Client has apparently died, so there is no reason to

  // continue.

  ProtoLog.w(WM_ERROR, "Adding window client %s"

  + " that is dead, aborting.", client.asBinder());

  return WindowManagerGlobal.ADD_APP_EXITING;

  }

  if (win.getDisplayContent() == null) {

  ProtoLog.w(WM_ERROR, "Adding window to Display that has been removed.");

  return WindowManagerGlobal.ADD_INVALID_DISPLAY;

  }

  // 调整 WindowManager的LayoutParams 参数

  final DisplayPolicy displayPolicy = displayContent.getDisplayPolicy();

  displayPolicy.adjustWindowParamsLw(win, win.mAttrs, callingPid, callingUid);

  res = displayPolicy.validateAddingWindowLw(attrs, callingPid, callingUid);

  if (res != WindowManagerGlobal.ADD_OKAY) {

  return res;

  }

  // 打开输入通道

  final boolean openInputChannels = (outInputChannel != null

  && (attrs.inputFeatures & INPUT_FEATURE_NO_INPUT_CHANNEL) == 0);

  if (openInputChannels) {

  win.openInputChannel(outInputChannel);

  }

  ...

  displayContent.getInputMonitor().setUpdateInputWindowsNeededLw();

  boolean focusChanged = false;

  //当该窗口能接收按键事件,则更新聚焦窗口

  if (win.canReceiveKeys()) {

  focusChanged = updateFocusedWindowLocked(UPDATE_FOCUS_WILL_ASSIGN_LAYERS,

  false /*updateInputWindows*/);

  if (focusChanged) {

  imMayMove = false;

  }

  }

  if (imMayMove) {

  displayContent.computeImeTarget(true /* updateImeTarget */);

  }

  ...

  }

  Binder.restoreCallingIdentity(origId);

  return res;

  }

  创建 SurfaceSession 对象,并将当前 Session 添加到 WMS.mSessions 成员变量。

  Session.java:

  void windowAddedLocked(String packageName) {

  mPackageName = packageName;

  mRelayoutTag = "relayoutWindow: " + mPackageName;

  if (mSurfaceSession == null) {

  if (DEBUG) {

  Slog.v(TAG_WM, "First window added to " + this + ", creating SurfaceSession");

  }

  mSurfaceSession = new SurfaceSession();

  ProtoLog.i(WM_SHOW_TRANSACTIONS, " NEW SURFACE SESSION %s", mSurfaceSession);

  mService.mSessions.add(this);

  if (mLastReportedAnimatorScale != mService.getCurrentAnimatorScale()) {

  mService.dispatchNewAnimatorScaleLocked(this);

  }

  }

  mNumWindow++;

  }

  SurfaceSession 的创建会调用 JNI,在 JNI 调用 nativeCreate()。

  android_view_SurfaceSession.cpp:

  static jlong nativeCreate(JNIEnv* env, jclass clazz) {

  SurfaceComposerClient* client = new SurfaceComposerClient();

  client->incStrong((void*)nativeCreate);

  return reinterpret_cast(client);

  }

  static jlong nativeCreate(JNIEnv* env, jclass clazz, jobject sessionObj,

  jstring nameStr, jint w, jint h, jint format, jint flags, jlong parentObject,

  jobject metadataParcel) {

  ScopedUtfChars name(env, nameStr);

  sp client;

  if (sessionObj != NULL) {

  client = android_view_SurfaceSession_getClient(env, sessionObj);

  } else {

  client = SurfaceComposerClient::getDefault();

  }

  SurfaceControl *parent = reinterpret_cast(parentObject);

  sp surface;

  LayerMetadata metadata;

  Parcel* parcel = parcelForJavaObject(env, metadataParcel);

  if (parcel && !parcel->objectsCount()) {

  status_t err = metadata.readFromParcel(parcel);

  if (err != NO_ERROR) {

  jniThrowException(env, "java/lang/IllegalArgumentException",

  "Metadata parcel has wrong format");

  }

  }

  status_t err = client->createSurfaceChecked(

  String8(name.c_str()), w, h, format, &surface, flags, parent, std::move(metadata));

  if (err == NAME_NOT_FOUND) {

  jniThrowException(env, "java/lang/IllegalArgumentException", NULL);

  return 0;

  } else if (err != NO_ERROR) {

  jniThrowException(env, OutOfResourcesException, NULL);

  return 0;

  }

  surface->incStrong((void *)nativeCreate);

  return reinterpret_cast(surface.get());

  }

  通过以上JNI接口获取SurfaceComposerClient 对象,作为跟 SurfaceFlinger 通信的代理对象。

  void SurfaceComposerClient::onFirstRef() {

  //getComposerService() 将返回 SF 的 Binder 代理端的 BpSurfaceFlinger 对象

  sp sf(ComposerService::getComposerService());

  if (sf != nullptr && mStatus == NO_INIT) {

  sp conn;

  //调用 SF 的 createConnection()

  conn = sf->createConnection();

  if (conn != nullptr) {

  mClient = conn;

  mStatus = NO_ERROR;

  }

  }

  }

  比如截屏接口就会通过SurfaceControl调用到其中的capture 接口:

  status_t ScreenshotClient::capture(const sp& display, ui::Dataspace reqDataSpace,

  ui::PixelFormat reqPixelFormat, const Rect& sourceCrop,

  uint32_t reqWidth, uint32_t reqHeight, bool useIdentityTransform,

  ui::Rotation rotation, bool captureSecureLayers,

  sp* outBuffer, bool& outCapturedSecureLayers) {

  sp s(ComposerService::getComposerService());

  if (s == nullptr) return NO_INIT;

  status_t ret = s->captureScreen(display, outBuffer, outCapturedSecureLayers, reqDataSpace,

  reqPixelFormat, sourceCrop, reqWidth, reqHeight,

  useIdentityTransform, rotation, captureSecureLayers);

  if (ret != NO_ERROR) {

  return ret;

  }

  return ret;

  }

  然后具体看下核心的SurfaceFlinger实现:

  SurfaceFlinger.cpp:

  sp SurfaceFlinger::createConnection() {

  //创建一个Client

  const sp client = new Client(this);

  return client->initCheck() == NO_ERROR ? client : nullptr;

  }

  回到之前,创建完 ViewRootImpl 对象后,接下来调用该对象的 setView() 方法。在 setView() 中调用了 requestLayout() 方法,现在具体来看下这个方法调用流程:

  @Override

  public void requestLayout() {

  if (!mHandlingLayoutInLayoutRequest) {

  checkThread();

  mLayoutRequested = true;

  scheduleTraversals();

  }

  }

  @UnsupportedAppUsage

  void scheduleTraversals() {

  if (!mTraversalScheduled) {

  mTraversalScheduled = true;

  mTraversalBarrier = mHandler.getLooper().getQueue().postSyncBarrier();       //启动TraversalRunnable

  mChoreographer.postCallback(

  Choreographer.CALLBACK_TRAVERSAL, mTraversalRunnable, null);

  notifyRendererOfFramePending();

  pokeDrawLockIfNeeded();

  }

  }

  final class TraversalRunnable implements Runnable {

  @Override

  public void run() {

  doTraversal();

  }

  }

  void doTraversal() {

  if (mTraversalScheduled) {

  mTraversalScheduled = false;

  mHandler.getLooper().getQueue().removeSyncBarrier(mTraversalBarrier);

  if (mProfile) {

  Debug.startMethodTracing("ViewAncestor");

  }

  //调用performTraversals performTraversals();

  if (mProfile) {

  Debug.stopMethodTracing();

  mProfile = false;

  }

  }

  }

  private void performTraversals() {

  // cache mView since it is used so much below...

  final View host = mView; //它就是 DecorView

  ...

  if (mFirst || windowShouldResize || viewVisibilityChanged || cutoutChanged || params != null

  || mForceNextWindowRelayout) {

  mForceNextWindowRelayout = false;

  if (isViewVisible) {

  // If this window is giving internal insets to the window

  // manager, and it is being added or changing its visibility,

  // then we want to first give the window manager "fake"

  // insets to cause it to effectively ignore the content of

  // the window during layout. This avoids it briefly causing

  // other windows to resize/move based on the raw frame of the

  // window, waiting until we can finish laying out this window

  // and get back to the window manager with the ultimately

  // computed insets.

  insetsPending = computesInternalInsets && (mFirst || viewVisibilityChanged);

  }

  ...

  try {

  if (DEBUG_LAYOUT) {

  Log.i(mTag, "host=w:" + host.getMeasuredWidth() + ", h:" +

  host.getMeasuredHeight() + ", params=" + params);

  }

  if (mAttachInfo.mThreadedRenderer != null) {

  // relayoutWindow may decide to destroy mSurface. As that decision

  // happens in WindowManager service, we need to be defensive here

  // and stop using the surface in case it gets destroyed.

  if (mAttachInfo.mThreadedRenderer.pause()) {

  // Animations were running so we need to push a frame

  // to resume them

  mDirty.set(0, 0, mWidth, mHeight);

  }

  mChoreographer.mFrameInfo.addFlags(FrameInfo.FLAG_WINDOW_LAYOUT_CHANGED);

  }

  // 关键函数relayoutWindow

  relayoutResult = relayoutWindow(params, viewVisibility, insetsPending);

  if (DEBUG_LAYOUT) Log.v(mTag, "relayout: frame=" + frame.toShortString()

  + " cutout=" + mPendingDisplayCutout.get().toString()

  + " surface=" + mSurface);

  // If the pending {@link MergedConfiguration} handed back from

  // {@link #relayoutWindow} does not match the one last reported,

  // WindowManagerService has reported back a frame from a configuration not yet

  // handled by the client. In this case, we need to accept the configuration so we

  // do not lay out and draw with the wrong configuration.

  if (!mPendingMergedConfiguration.equals(mLastReportedMergedConfiguration)) {

  if (DEBUG_CONFIGURATION) Log.v(mTag, "Visible with new config: "

  + mPendingMergedConfiguration.getMergedConfiguration());

  performConfigurationChange(mPendingMergedConfiguration, !mFirst,

  INVALID_DISPLAY /* same display */);

  updatedConfiguration = true;

  }

  } catch (RemoteException e) {

  }

  ...

  }

  boolean cancelDraw = mAttachInfo.mTreeObserver.dispatchOnPreDraw() || !isViewVisible;

  if (!cancelDraw) {

  if (mPendingTransitions != null && mPendingTransitions.size() > 0) {

  for (int i = 0; i < mPendingTransitions.size(); ++i) {

  mPendingTransitions.get(i).startChangingAnimations();

  }

  mPendingTransitions.clear();

  }

  //开始绘制,其中调用了draw(fullRedrawNeeded);

  performDraw();

  } else {

  if (isViewVisible) {

  // Try again

  scheduleTraversals();

  } else if (mPendingTransitions != null && mPendingTransitions.size() > 0) {

  for (int i = 0; i < mPendingTransitions.size(); ++i) {

  mPendingTransitions.get(i).endChangingAnimations();

  }

  mPendingTransitions.clear();

  }

  }

  if (mAttachInfo.mContentCaptureEvents != null) {

  notifyContentCatpureEvents();

  }

  mIsInTraversal = false;

  }

  再看下relayoutWindow的实现:

  ... if (mSurfaceControl.isValid()) {

  if (!useBLAST()) {

  //先创建一个本地Surface,然后调用copyFrom 将SurfaceControl信息拷贝到Surface中

  mSurface.copyFrom(mSurfaceControl);

  } else {

  final Surface blastSurface = getOrCreateBLASTSurface(mSurfaceSize.x,

  mSurfaceSize.y);

  // If blastSurface == null that means it hasn't changed since the last time we

  // called. In this situation, avoid calling transferFrom as we would then

  // inc the generation ID and cause EGL resources to be recreated.

  if (blastSurface != null) {

  mSurface.transferFrom(blastSurface);

  }

  }

  } else {

  destroySurface();

  }....

  SurfaceControl 类可以看作是一个 wrapper 类,最后会执行 copyFrom() 将其返回给 App 客户端:

  @UnsupportedAppUsage

  public void copyFrom(SurfaceControl other) {

  if (other == null) {

  throw new IllegalArgumentException("other must not be null");

  }

  long surfaceControlPtr = other.mNativeObject;

  if (surfaceControlPtr == 0) {

  throw new NullPointerException(

  "null SurfaceControl native object. Are you using a released SurfaceControl?");

  }

  //通过JNI获取源SurfaceControl

  long newNativeObject = nativeGetFromSurfaceControl(mNativeObject, surfaceControlPtr);

  synchronized (mLock) {

  if (newNativeObject == mNativeObject) {

  return;

  }

  if (mNativeObject != 0) {

  nativeRelease(mNativeObject);

  }

  //保存到全局mNativeObject用于外部调用

  setNativeObjectLocked(newNativeObject);

  }

  }

  Surface 显示过程总结:

  在 App 进程中创建 PhoneWindow 后会创建 ViewRoot。ViewRoot 的创建会创建一个 Surface,这个 Surface 其实是空的,通过与 WindowManagerService 通信 copyFrom() 一个NativeSurface 与 SurfaceFlinger 通信时。

  关于Native Window:

  Native Window是OpenGL与本地窗口系统之间搭建了桥梁。整个GUI系统至少需要两种本地窗口:

  SurfaceFlinger是系统中所有UI界面的管理者,需要直接或间接的持有“本地窗口”,此本地窗口是FramebufferNativeWindow。

  这类本地窗口是Surface。

  正常情况按照SDK向导生成APK应用程序,是采用Skia等第三方图形库,而对于希望使用OpenGL ES来完成复杂界面渲染的应用开发者来说,Android也提供封装的GLSurfaceView(或其他方式)来实现图形显示。

  ①FramebufferNativeWindow

  EGL需要通过本地窗口来为OpenGL/OpenGL ES创建环境。由于OpenGL/ES对多平台支持,考虑到兼容性和移植性。不同平台的本地窗口EGLNativeWindowType数据类型不同。

  Android平台的数据类型是ANativeWindow,像是一份“协议”,规定了一个本地窗口的形态和功能。ANativeWindow是FramebufferNativeWindow的父类。

  Android中,由于多缓冲技术,EGLNativeWindowType所管理的缓冲区最少2个,最大3个。

  FramebufferNativeWindow初始化需要Golloc支持,步骤如下:

  ②应用程序的本地窗口 - Surface

  Surface也继承了ANativeWindow

  class Surface : public ANativeObjectBase

  Surface是面向Android系统中所有UI应用程序的,即它承担着应用进程中的UI显示需求。

  需要面向上层实现(主要是Java层)提供绘制图像的画板。SurfaceFlinger需要收集系统中所有应用程序绘制的图像数据,然后集中显示到物理屏幕上。Surface需要扮演相应角色,本质上还是由SurfaceFlinger服务统一管理的,涉及到很多跨进程的通信细节。

  ③Surface的创建

  Surface将通过mGraphicBufferProducer来获取buffer,这些缓冲区会被记录在mSlots中数据中。mGraphicBufferProducer这一核心成员的初始化流程如下:

  ViewRootImpl持有一个Java层的Surface对象(mSurface)。

  ViewRootImpl向WindowManagerService发起relayout请求,此时mSurface被赋予真正的有效值,将辗转生成的SurfaceControl通过Surface.copyFrom()函数复制到mSurface中。

  由此,Surface由SurfaceControl管理,SurfaceControl由SurfaceComposerClient创建。SurfaceComposerClient获得的匿名Binder是ISurfaceComposer,其服务端实现是SurfaceFlinger。而Surface依赖的IGraphicBufferProducer对象在Service端的实现是BufferQueue。

  class SurfaceFlinger :

  public BinderService, //在ServiceManager中注册为SurfaceFlinger

  public BnSurfaceComposer,//实现的接口却叫ISurfaceComposer

  ④SurfaceFlinger服务框架:

  Buffer,Consumer,Producer是“生产者-消费者”模型中的3个参与对象,如何协调好它们的工作是应用程序能否正常显示UI的关键。

  Buffer是BufferQueue,Producer是应用程序,Consumer是SurfaceFlinger。

  Surface内部提供一个BufferQueue,与上层和SurfaceFlinger形成一个生产者消费者模型,上层对应Producer,SurfaceFlinger对应Consumer。三者通过Buffer产生联系,每个Buffer都有四种状态:

  如此循环,形成一个Buffer被循环使用的过程(FREE-> DEQUEUED->QUEUED->ACQUIRED->FREE)。

  BufferQueue中的mSlots数组用于管理期内的缓冲区,最大容器是32。数据缓冲区的空间是动态分配的,应用程序与SurfaceFlinger都是使用OpenGL ES来完成UI显示。Layer类在SurfaceFlinger中表示“层”,通俗地讲就是代表了一个“画面”,最终物理屏幕上的显示结果就是通过对系统中同时存在的所有“画面”进行处理叠加而成。

  到此这篇关于Android显示系统SurfaceFlinger详解的文章就介绍到这了。希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

  您可能感兴趣的文章: